Goldbach's conjecture: every even integer $n>2$ can be written as the sum of two primes.
How should we investigate this conjecture?
First let's construct a list of odd primes up to $N$, say.
|
[3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] [3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97] |
|
{'January': 3, 'February': 1, 'March': 2} {'January': 3, 'February': 1, 'March': 2} |
|
{'February': 1, 'October': 4, 'March': 2, 'August': 1, 'May': 1, 'January': 3, 'June': 0, 'September': 1, 'April': 1, 'December': 0, 'July': 0, 'November': 1} {'February': 1, 'October': 4, 'March': 2, 'August': 1, 'May': 1, 'January': 3, 'June': 0, 'September': 1, 'April': 1, 'December': 0, 'July': 0, 'November': 1} |
False False |
|
{6: 1, 8: 2, 10: 3, 12: 2, 14: 3, 16: 4, 18: 4, 20: 4, 22: 5, 24: 6, 26: 5, 28: 4, 30: 6, 32: 4, 34: 7, 36: 8, 38: 3, 40: 6, 42: 8, 44: 6, 46: 7, 48: 10, 50: 8, 52: 6, 54: 10, 56: 6, 58: 7, 60: 12, 62: 5, 64: 10, 66: 12, 68: 4, 70: 10, 72: 12, 74: 9, 76: 10, 78: 14, 80: 8, 82: 9, 84: 16, 86: 9, 88: 8, 90: 18, 92: 8, 94: 9, 96: 14, 98: 6, 100: 12, 102: 16, 104: 8, 106: 7, 108: 12, 110: 8, 112: 8, 114: 12, 116: 6, 118: 5, 120: 14, 122: 3, 124: 4, 126: 12, 128: 4, 130: 6, 132: 8, 134: 5, 136: 4, 138: 6, 140: 6, 142: 5, 144: 6, 146: 3, 148: 2, 150: 8, 152: 2, 154: 2, 156: 6, 158: 3, 160: 2, 162: 4, 164: 2, 166: 1, 168: 4, 170: 2, 172: 2, 176: 2, 178: 1, 180: 2, 186: 2, 194: 1} {6: 1, 8: 2, 10: 3, 12: 2, 14: 3, 16: 4, 18: 4, 20: 4, 22: 5, 24: 6, 26: 5, 28: 4, 30: 6, 32: 4, 34: 7, 36: 8, 38: 3, 40: 6, 42: 8, 44: 6, 46: 7, 48: 10, 50: 8, 52: 6, 54: 10, 56: 6, 58: 7, 60: 12, 62: 5, 64: 10, 66: 12, 68: 4, 70: 10, 72: 12, 74: 9, 76: 10, 78: 14, 80: 8, 82: 9, 84: 16, 86: 9, 88: 8, 90: 18, 92: 8, 94: 9, 96: 14, 98: 6, 100: 12, 102: 16, 104: 8, 106: 7, 108: 12, 110: 8, 112: 8, 114: 12, 116: 6, 118: 5, 120: 14, 122: 3, 124: 4, 126: 12, 128: 4, 130: 6, 132: 8, 134: 5, 136: 4, 138: 6, 140: 6, 142: 5, 144: 6, 146: 3, 148: 2, 150: 8, 152: 2, 154: 2, 156: 6, 158: 3, 160: 2, 162: 4, 164: 2, 166: 1, 168: 4, 170: 2, 172: 2, 176: 2, 178: 1, 180: 2, 186: 2, 194: 1} |
Traceback (click to the left of this block for traceback) ... TypeError: unhashable type Traceback (most recent call last): File "<stdin>", line 1, in <module> File "_sage_input_33.py", line 10, in <module> exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("bGlzdF9wbG90KGdvbGRiYWNoX2RpY3RbOjEwMDAwXSk="),globals())+"\\n"); execfile(os.path.abspath("___code___.py")) File "", line 1, in <module> File "/tmp/tmpRpIjUb/___code___.py", line 3, in <module> exec compile(u'list_plot(goldbach_dict[:_sage_const_10000 ]) File "", line 1, in <module> TypeError: unhashable type |
|
![]() |
|
|
0 2 4 0 2 4 |
This computation suggests that the Goldbach conjecture is true.
|
![]() |
[[6, 1], [8, 2], [10, 3], [16, 4], [22, 5], [24, 6], [34, 7], [36, 8], [48, 10], [60, 12], [78, 14], [84, 16], [90, 18], [114, 20], [120, 24], [168, 26], [180, 28], [210, 38], [300, 42], [330, 48], [390, 54], [420, 60], [510, 64], [630, 82], [780, 88], [840, 102], [990, 104], [1050, 114], [1140, 116], [1260, 136], [1470, 146], [1650, 152], [1680, 166], [1890, 182], [2100, 194], [2310, 228], [2730, 256], [3150, 276], [3570, 308], [3990, 326], [4200, 330], [4410, 342], [4620, 380], [5250, 396], [5460, 436], [6090, 444], [6510, 482], [6930, 536], [7980, 548], [8190, 584], [9030, 606], [9240, 658]] [[6, 1], [8, 2], [10, 3], [16, 4], [22, 5], [24, 6], [34, 7], [36, 8], [48, 10], [60, 12], [78, 14], [84, 16], [90, 18], [114, 20], [120, 24], [168, 26], [180, 28], [210, 38], [300, 42], [330, 48], [390, 54], [420, 60], [510, 64], [630, 82], [780, 88], [840, 102], [990, 104], [1050, 114], [1140, 116], [1260, 136], [1470, 146], [1650, 152], [1680, 166], [1890, 182], [2100, 194], [2310, 228], [2730, 256], [3150, 276], [3570, 308], [3990, 326], [4200, 330], [4410, 342], [4620, 380], [5250, 396], [5460, 436], [6090, 444], [6510, 482], [6930, 536], [7980, 548], [8190, 584], [9030, 606], [9240, 658]] |
|
![]() |
|
|
Traceback (click to the left of this block for traceback) ... NameError: name 'A' is not defined Traceback (most recent call last): File "<stdin>", line 1, in <module> File "_sage_input_3.py", line 10, in <module> exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("c2hvdyhBK0Ip"),globals())+"\\n"); execfile(os.path.abspath("___code___.py")) File "", line 1, in <module> File "/tmp/tmphO_J72/___code___.py", line 2, in <module> exec compile(u'show(A+B) File "", line 1, in <module> NameError: name 'A' is not defined |
How many primes are there congruent to 1 mod 6? How many congruent to 5 mod 6?
(39231, 39265) (39231, 39265) |
How do we compute
\[ HL(n) = \prod_{p \mbox{odd}, p|n} \frac{p-1}{p-2} \]
|
16/5 16/5 |
|
|
[[6, 1/2], [8, 2], [10, 9/4], [12, 1], [14, 5/2]] [[6, 1/2], [8, 2], [10, 9/4], [12, 1], [14, 5/2]] |
|
![]() |
![]() |
|
![]() |
|
65537 65537 |
65537 65537 |
|
False False |
641 * 6700417 641 * 6700417 |
|