Kylie Stephens
MATH 3600
C10726950
We wish to find numerical approximations to $\sqrt{4}$.
|
|
|
Let us zoom in a bit to see that this really does look like a tangent.
|
The question that we need to answer is where does the line $y=2x-5$ meet the $x$ axis? That is, for which value of $x$ is $y$ equal to 0? \[x=5/2.\]
The equation for the tangent line to the point $(x_n, f(x_n))$ will be the equation $y=f'(x_n) x+a$, and $a$ will satisfy $f(x_n)=f'(x_n)x_n + a$,
so \[ a=f(x_n) - f'(x_n) x_n.\]
This line will hit the $x$ axis when $f'(x_n)x = -a$, that is, when
\[ x = x_n-\frac{f(x_n)}{f'(x_n)}.\]
We'll call this point $x_{n+1}$.
For the particular function $f(x)=x^2-4$ we have in mind, $f'(x)=2x$, so
\[ x_{n+1} = x_n-\frac{x_n^2-2}{2x_n}\]
\[ \frac{x_n}{2} + \frac{2}{x_n}\]
|
5/2 5/2 |
1 1 |
41/20 41/20 |
1 1 |
3281/1640 3281/1640 |
1 1 |
21523361/10761680 21523361/10761680 |
1 1 |
It appears to be the case that if $n$th iterate $x_n$ = $a_n / b_n$, then $a_n - 2(b_n) = 1$.
2.50000000000000 2.05000000000000 2.00060975609756 2.00000009292229 2.00000000000000 2.50000000000000 2.05000000000000 2.00060975609756 2.00000009292229 2.00000000000000 |
2.50000000000000 2.05000000000000 2.00060975609756 2.00000009292229 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.50000000000000 2.05000000000000 2.00060975609756 2.00000009292229 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 2.00000000000000 |
|
![]() |
[2, 2] [2, 2] |
[2, 20] [2, 20] |
[2, 1640] [2, 1640] |
Starting with $x_0=1$, $x_1=5/2$, and
\[ x_{n+1} = \frac{x_n}{2} + \frac{2}{x_n} \]
we can write
\[ x_n = \frac{a_n}{b_n}\]
in which $a_n, b_n$ are integers with no common factors. Then
\[ \frac{a_{n+1}}{b_{n+1}} = \frac{a_n}{2b_n} + \frac{2b_n}{a_n} = \frac{a_n^2 + 4b_n^2}{2a_nb_n} \]
Now, for $n\geq 1$, we have $a_n$ is odd and $b_n$ is even, so $a_n^2+ 2b_n^2$ is odd. Furthermore, any odd prime divisor of $2a_nb_n$ must fail to divide $a_n^2 + 2b_n^2$, since $a_n$ and $b_n$ have no common factors.
Hence
\[ a_{n+1} = a_n^2 + 4b_n^2 \mbox{ and } b_{n+1} = 2a_nb_n .\]
We'll prove this by induction. Suppose that $a_n - 2b_n = 1$. Then \[ a_{n+1} - 2 b_{n+1} = (a_n^2 + 4 b_n^2) - 2 (2a_nb_n)\] \[ = (a_n^2 + 4 b_n^2) - 4a_nb_n \] \[= a_n^2 - 4a_nb_n + 4 b_n^2 = (a_n - 2b_n)^2 = 1^2 = 1 \]
\[ x_n-\sqrt{4} = \frac{a_n}{b_n} - 2 = \frac{a_n - 2b_n }{b_n} = \frac{1}{b_n}\]
Declare some variables, $C$, $\alpha$ so that we can compute with them:
(C, alpha) (C, alpha) |
|
C^2*alpha C^2*alpha |
C^4*alpha^3 C^4*alpha^3 |
C^8*alpha^7 C^8*alpha^7 |
C^16*alpha^15 C^16*alpha^15 |
It seems clear now that
\[ c_n = \alpha^{2^n-1} C^{2^n} =\frac{1}{\alpha} (\alpha C)^{2^n} \]
and so $c_n$ grows like a constant raised to the $2^n$, that is, we see doubly exponential growth.
Let us compute the first $N$ values of $b_n$ and compare then to $2^{2^n}$.
|
0.500000000000000 0.500000000000000 0.750000000000000 2.34375000000000 21.9909667968750 1934.41115375608 1.49677860471046e7 8.96138476607602e14 3.21225667702638e30 4.12743718364021e61 6.81429508195835e123 1.85738469856007e248 1.37995116737803e497 7.61706089739195e994 2.32078466858310e1990 2.15441659117214e3981 1.85660433932711e7963 1.37879186912331e15927 7.60426807344216e31854 2.31299571731087e63710 0.500000000000000 0.500000000000000 0.750000000000000 2.34375000000000 21.9909667968750 1934.41115375608 1.49677860471046e7 8.96138476607602e14 3.21225667702638e30 4.12743718364021e61 6.81429508195835e123 1.85738469856007e248 1.37995116737803e497 7.61706089739195e994 2.32078466858310e1990 2.15441659117214e3981 1.85660433932711e7963 1.37879186912331e15927 7.60426807344216e31854 2.31299571731087e63710 |
0.333333333333333 0.222222222222222 0.148148148148148 0.0914494741655235 0.0334799019883535 0.00448361690411366 0.0000804112821714199 2.58638972018068e-8 2.67576471386252e-15 2.86388672158072e-29 3.28073886161854e-57 4.30529899125364e-113 7.41423976163586e-225 2.19883804972089e-448 1.93395550756014e-895 1.49607356208888e-1789 8.95294441272523e-3578 3.20620854629392e-7154 4.11190929693127e-14307 6.76311922647591e-28613 0.333333333333333 0.222222222222222 0.148148148148148 0.0914494741655235 0.0334799019883535 0.00448361690411366 0.0000804112821714199 2.58638972018068e-8 2.67576471386252e-15 2.86388672158072e-29 3.28073886161854e-57 4.30529899125364e-113 7.41423976163586e-225 2.19883804972089e-448 1.93395550756014e-895 1.49607356208888e-1789 8.95294441272523e-3578 3.20620854629392e-7154 4.11190929693127e-14307 6.76311922647591e-28613 |
That's still too fast. Let's try 2.5.
0.400000000000000 0.320000000000000 0.307200000000000 0.393216000000000 0.618990686699520 1.53259841259192 9.39543157711771 353.096538081202 498708.660819720 9.94841313506396e11 3.95883695623652e24 6.26895601842562e49 1.57199238243819e100 9.88464020177482e200 3.90824447674172e402 6.10974995599286e805 1.49316178099019e1612 8.91812841683917e3224 3.18132057836938e6450 4.04832024894258e12901 0.400000000000000 0.320000000000000 0.307200000000000 0.393216000000000 0.618990686699520 1.53259841259192 9.39543157711771 353.096538081202 498708.660819720 9.94841313506396e11 3.95883695623652e24 6.26895601842562e49 1.57199238243819e100 9.88464020177482e200 3.90824447674172e402 6.10974995599286e805 1.49316178099019e1612 8.91812841683917e3224 3.18132057836938e6450 4.04832024894258e12901 |
Since 2.6457 is equivalent to the $\sqrt{7}$, let's attempt $\sqrt{7}$.
0.377964473009227 0.285714285714286 0.244897959183673 0.249895876718034 0.249999956633369 0.249999999999992 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.377964473009227 0.285714285714286 0.244897959183673 0.249895876718034 0.249999956633369 0.249999999999992 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 0.250000000000000 |
It appears that $\sqrt{7}$ converges to 0.25000... Which we know is equivalent to 1/4.
Is it possible that our constant is in fact 1/4?
1.5118578920369089089 1.1428571428571428571 0.97959183673469387755 0.99958350687213660975 0.99999982653347444257 0.99999999999996990936 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.5118578920369089089 1.1428571428571428571 0.97959183673469387755 0.99958350687213660975 0.99999982653347444257 0.99999999999996990936 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 1.0000000000000000000 |
Just to be safe, let's also calculate this to 40 digits.
1.511857892036908908858066144936720243263 1.142857142857142857142857142857142857143 0.9795918367346938775510204081632653061224 0.9995835068721366097459391920033319450229 0.9999998265334744425696567843365278350458 0.9999999999999699093645110333655549144763 0.9999999999999999999999999990945536558701 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.511857892036908908858066144936720243263 1.142857142857142857142857142857142857143 0.9795918367346938775510204081632653061224 0.9995835068721366097459391920033319450229 0.9999998265334744425696567843365278350458 0.9999999999999699093645110333655549144763 0.9999999999999999999999999990945536558701 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 1.000000000000000000000000000000000000000 |
443074.159143003 443074.159143003 |
This means that $b_n$ is on the order of four hundred thousand digits.
8308232642400 8308232642400 |
8308232642400 8308232642400 |
1 0 2 1 12 12 600 600 1441200 1441200 8308232642400 8308232642400 276106918560980161576324800 276106918560980161576324800 304940121908958925034643465640742955188903823532809600 304940121908958925034643465640742955188903823532809600 371953911799402923977578170435318392583089179288699737474624576271596828\ 855825249913689390482158326474259200 371953911799402923977578170435318392583089179288699737474624576271596828\ 855825249913689390482158326474259200 553398850011512038862547153868736484290629262565018267479091597631176243\ 501997499212000858459485095195698613815578151899716840856485140003714006\ 966595486614737801459344779118415811683377420180316061560797408087078400 553398850011512038862547153868736484290629262565018267479091597631176243\ 501997499212000858459485095195698613815578151899716840856485140003714006\ 966595486614737801459344779118415811683377420180316061560797408087078400 1 0 2 1 12 12 600 600 1441200 1441200 8308232642400 8308232642400 276106918560980161576324800 276106918560980161576324800 304940121908958925034643465640742955188903823532809600 304940121908958925034643465640742955188903823532809600 371953911799402923977578170435318392583089179288699737474624576271596828855825249913689390482158326474259200 371953911799402923977578170435318392583089179288699737474624576271596828855825249913689390482158326474259200 553398850011512038862547153868736484290629262565018267479091597631176243501997499212000858459485095195698613815578151899716840856485140003714006966595486614737801459344779118415811683377420180316061560797408087078400 553398850011512038862547153868736484290629262565018267479091597631176243501997499212000858459485095195698613815578151899716840856485140003714006966595486614737801459344779118415811683377420180316061560797408087078400 |
It now appears that we have an exact formula for $b_n$! \[ b_n =\left\lfloor \frac{1}{4} (\sqrt{7})^{2^n}\right\rfloor. \]
Furthermore, $a_n$ has a similar formula:
\[ a_n =\left\lfloor 1 + \frac{1}{2} (\sqrt{7})^{2^n}\right\rfloor. \]
This can be proven by using the equation that we proved earlier: $a_n - 2b_n = 1$.
Hence,
\[ 1 + \frac{1}{2} (\sqrt{7}^{2^n}) - 2(\frac{1}{4} \sqrt{7}^{2^n}) = 1 + 0 = 1.\]
Thus, $a_n$ and $b_n$ work in the recurrence.
To further iterate that $\sqrt{4} = 2$, let's do a convergent list.
|
2.00000000000000 2.00000000000000 |
|
2 2 |
Traceback (click to the left of this block for traceback) ... IndexError: list index out of range Traceback (most recent call last): File "<stdin>", line 1, in <module> File "_sage_input_212.py", line 10, in <module> exec compile(u'open("___code___.py","w").write("# -*- coding: utf-8 -*-\\n" + _support_.preparse_worksheet_cell(base64.b64decode("Y29udmVyZ2VudF9saXN0WzFd"),globals())+"\\n"); execfile(os.path.abspath("___code___.py")) File "", line 1, in <module> File "/tmp/tmpU9MUoK/___code___.py", line 3, in <module> exec compile(u'convergent_list[_sage_const_1 ] File "", line 1, in <module> IndexError: list index out of range |
Since the convergent list only has one value, we can be sure that $\sqrt{4}$ is equivalent to 2 and only 2.
|