Log in to edit a copy.
Download.
Other published documents...
Calculus UNIT509: What is an Indefinite Integral?
3314 days ago by MATH4R2013
#1) 88AB6: f'(x)=a*x^2+b*x, f'(1)=6, f"(1)=18, integrate(f(x),x,1,2)=18, find f(x)! var('a,b') fp(x)=a*x^2+b*x fpp(x)=diff(fp(x),x) show(fp(x)) show(fpp(x))
show(fp(1)) show(fpp(1))
solve([6==a+b,18==2*a+b],(a,b))
fp(x)=12*x^2-6*x f(x)=integrate(fp(x),x) show(fp(x)) show(f(x))
var('C') f(x)=4*x^3-3*x^2+C show(integrate(f(x),x)) show(integrate(f(x),x,1,2))
solve(C+8==18,C)
f(x)=4*x^3-3*x^2+10 show(f(x))
#2) T/F: integrate(cos(x)^2,x)==integrate(1/2+cos(2*x)/2,x), (True) show(integrate(cos(x)^2,x)) show(integrate(1/2+cos(2*x)/2,x))
#3) T/F: integrate(sin(x)^2,x)==integrate(1/2-cos(2*x)/2,x), (True) show(integrate(sin(x)^2,x)) show(integrate(1/2-cos(2*x)/2,x))
#4) T/F: integrate(x*cos(x),x)==x*sin(x)+C, (False) show(diff(x*sin(x),x))
#5) T/F: integrate(x*cos(x),x)==x*cos(x)+C, (False) show(diff(x*cos(x),x))
#6) T/F: integrate(x*cos(x),x)==x*sin(x)-cos(x)+C, (False) show(diff(x*sin(x)-cos(x),x))
#7) T/F: integrate(x*cos(x),x)==x*sin(x)+cos(x)+C, (True) show(diff(x*sin(x)+cos(x),x))