p1_mrg_matrix3

2892 days ago by LAC2011

a=matrix(2,2,(3,-2,5,-4));a 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
3 & -2 \\
5 & -4
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
3 & -2 \\
5 & -4
\end{array}\right)
b=matrix(2,1,(4,0));b 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
4 \\
0
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
4 \\
0
\end{array}\right)
a**(-1)*b 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
8 \\
10
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
8 \\
10
\end{array}\right)
a\b 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
8 \\
10
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
8 \\
10
\end{array}\right)
a.solve_right(b) 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
8 \\
10
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
8 \\
10
\end{array}\right)
c=matrix(2,2,(4,-2,0,-4));c 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
4 & -2 \\
0 & -4
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
4 & -2 \\
0 & -4
\end{array}\right)
x=det(c)/det(a);x 
       
\newcommand{\Bold}[1]{\mathbf{#1}}8
\newcommand{\Bold}[1]{\mathbf{#1}}8
d=matrix(2,2,(3,4,5,0));d 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
3 & 4 \\
5 & 0
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
3 & 4 \\
5 & 0
\end{array}\right)
y=det(d)/det(a);y 
       
\newcommand{\Bold}[1]{\mathbf{#1}}10
\newcommand{\Bold}[1]{\mathbf{#1}}10
a=matrix(3,3,(1,1,-1,3,-2,1,1,3,-2));a 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrr}
1 & 1 & -1 \\
3 & -2 & 1 \\
1 & 3 & -2
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrr}
1 & 1 & -1 \\
3 & -2 & 1 \\
1 & 3 & -2
\end{array}\right)
b=matrix(3,1,(6,-5,14));b 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
6 \\
-5 \\
14
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
6 \\
-5 \\
14
\end{array}\right)
a**(-1)*b 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
1 \\
3 \\
-2
\end{array}\right)
c=matrix(3,3,(6,1,-1,-5,-2,1,14,3,-2));c 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrr}
6 & 1 & -1 \\
-5 & -2 & 1 \\
14 & 3 & -2
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrr}
6 & 1 & -1 \\
-5 & -2 & 1 \\
14 & 3 & -2
\end{array}\right)
x=c.det()/a.det();x 
       
\newcommand{\Bold}[1]{\mathbf{#1}}1
\newcommand{\Bold}[1]{\mathbf{#1}}1
d=matrix(3,3,(1,6,-1,3,-5,1,1,14,-2));d 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrr}
1 & 6 & -1 \\
3 & -5 & 1 \\
1 & 14 & -2
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrr}
1 & 6 & -1 \\
3 & -5 & 1 \\
1 & 14 & -2
\end{array}\right)
y=det(d)/det(a);y 
       
\newcommand{\Bold}[1]{\mathbf{#1}}3
\newcommand{\Bold}[1]{\mathbf{#1}}3
e=matrix(3,3,(1,1,6,3,-2,-5,1,3,14));e 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrr}
1 & 1 & 6 \\
3 & -2 & -5 \\
1 & 3 & 14
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rrr}
1 & 1 & 6 \\
3 & -2 & -5 \\
1 & 3 & 14
\end{array}\right)
z=det(e)/det(a);z 
       
\newcommand{\Bold}[1]{\mathbf{#1}}-2
\newcommand{\Bold}[1]{\mathbf{#1}}-2
a=matrix(2,2,(2,-3,10,10));a 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
2 & -3 \\
10 & 10
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
2 & -3 \\
10 & 10
\end{array}\right)
b=matrix(2,1,(-1,5));b 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
-1 \\
5
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{r}
-1 \\
5
\end{array}\right)
c=matrix(2,2,(-1,-3,5,10));c 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
-1 & -3 \\
5 & 10
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
-1 & -3 \\
5 & 10
\end{array}\right)
x=det(c)/det(a);x 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{10}
\newcommand{\Bold}[1]{\mathbf{#1}}\frac{1}{10}
d=matrix(2,2,(2,-1,10,5));d 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
2 & -1 \\
10 & 5
\end{array}\right)
\newcommand{\Bold}[1]{\mathbf{#1}}\left(\begin{array}{rr}
2 & -1 \\
10 & 5
\end{array}\right)
y=det(d)/det(a);y 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\frac{2}{5}
\newcommand{\Bold}[1]{\mathbf{#1}}\frac{2}{5}