# 1002 MrG What is the equation of a Parabola

## 2779 days ago by MATH4R2013

#1) Graph y^2==12*x var('y') solve(y^2==12*x,y)
 $\newcommand{\Bold}{\mathbf{#1}}\left[y = -2 \, \sqrt{3} \sqrt{x}, y = 2 \, \sqrt{3} \sqrt{x}\right]$
plot([-sqrt(12*x),sqrt(12*x)],0,3,aspect_ratio=1)  #2) Graph y^2==-8*x solve(y^2==-8*x,y)
 $\newcommand{\Bold}{\mathbf{#1}}\left[y = -2 \, \sqrt{-x} \sqrt{2}, y = 2 \, \sqrt{-x} \sqrt{2}\right]$
plot([-sqrt(-8*x),sqrt(-8*x)],-2,0,aspect_ratio=1)  #3) Graph x^2==-12*y solve(x^2==-12*y,y)
 $\newcommand{\Bold}{\mathbf{#1}}\left[y = -\frac{1}{12} \, x^{2}\right]$
plot([-x^2/12],-6,6,aspect_ratio=1)  #4) Graph (y-3)^2==8*(x+3) solve((y-3)^2==8*(x+3),y)
 $\newcommand{\Bold}{\mathbf{#1}}\left[y = -2 \, \sqrt{2 \, x + 6} + 3, y = 2 \, \sqrt{2 \, x + 6} + 3\right]$
plot([3+sqrt(8*x+24),3-sqrt(8*x+24)],-3,1,aspect_ratio=1)  #5) Graph x^2+4*x-4*y==0 solve(x^2+4*x-4*y==0,y)
 $\newcommand{\Bold}{\mathbf{#1}}\left[y = \frac{1}{4} \, x^{2} + x\right]$
plot([x^2/4+x],-4,0,aspect_ratio=1)  