\newcommand{\Bold}[1]{\mathbf{#1}}-\frac{1}{48} \, \sqrt{30} \log\left(-\frac{4 \, \sqrt{30} - 3 \, v\left(t\right)}{4 \, \sqrt{30} + 3 \, v\left(t\right)}\right) = c + t
\newcommand{\Bold}[1]{\mathbf{#1}}-\frac{1}{48} \, \sqrt{30} \log\left(-\frac{4 \, \sqrt{30} - 3 \, v\left(t\right)}{4 \, \sqrt{30} + 3 \, v\left(t\right)}\right) = \frac{1}{240} \, {\left(-5 i \, \pi + 8 \, \sqrt{30} t\right)} \sqrt{30}
\newcommand{\Bold}[1]{\mathbf{#1}}\left[v\left(t\right) = \frac{4 \, {\left(\sqrt{30} e^{\left(\frac{8}{5} \, \sqrt{30} t\right)} - \sqrt{30}\right)}}{3 \, {\left(e^{\left(\frac{8}{5} \, \sqrt{30} t\right)} + 1\right)}}\right]

\newcommand{\Bold}[1]{\mathbf{#1}}-\frac{1}{48} \, \sqrt{30} \log\left(-\frac{4 \, \sqrt{30} - 3 \, v\left(t\right)}{4 \, \sqrt{30} + 3 \, v\left(t\right)}\right) = c + t
\newcommand{\Bold}[1]{\mathbf{#1}}-\frac{1}{48} \, \sqrt{30} \log\left(-\frac{4 \, \sqrt{30} - 3 \, v\left(t\right)}{4 \, \sqrt{30} + 3 \, v\left(t\right)}\right) = \frac{1}{240} \, {\left(-5 i \, \pi + 8 \, \sqrt{30} t\right)} \sqrt{30}
\newcommand{\Bold}[1]{\mathbf{#1}}\left[v\left(t\right) = \frac{4 \, {\left(\sqrt{30} e^{\left(\frac{8}{5} \, \sqrt{30} t\right)} - \sqrt{30}\right)}}{3 \, {\left(e^{\left(\frac{8}{5} \, \sqrt{30} t\right)} + 1\right)}}\right]
