preCalculus Quiz10A MRG 2012.0214

3541 days ago by calcpage123

#1) var('y') f=solve(x^2+8*x==4*y-8,y) show(f) plot(f[0].rhs(),-10,0,aspect_ratio=1) 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left[y = \frac{1}{4} \, x^{2} + 2 \, x + 2\right]
\newcommand{\Bold}[1]{\mathbf{#1}}\left[y = \frac{1}{4} \, x^{2} + 2 \, x + 2\right]
#2) g=solve(y^2+2*y-x==0,y) show(g) plot([g[0].rhs(),g[1].rhs()],-1,10,aspect_ratio=1) 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left[y = -\sqrt{x + 1} - 1, y = \sqrt{x + 1} - 1\right]
\newcommand{\Bold}[1]{\mathbf{#1}}\left[y = -\sqrt{x + 1} - 1, y = \sqrt{x + 1} - 1\right]
#3) h=solve(9*x^2+y^2-18*x==0,y) show(h) plot([h[0].rhs(),h[1].rhs()],0,2,aspect_ratio=1) 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left[y = -3 \, \sqrt{-x^{2} + 2 \, x}, y = 3 \, \sqrt{-x^{2} + 2 \, x}\right]
\newcommand{\Bold}[1]{\mathbf{#1}}\left[y = -3 \, \sqrt{-x^{2} + 2 \, x}, y = 3 \, \sqrt{-x^{2} + 2 \, x}\right]
#4) j=solve(x^2-y^2-2*x-2*y-1==0,y) show(j) p1a=plot(j[0].rhs(),-2,0,aspect_ratio=1) p1b=plot(j[0].rhs(),2,4,aspect_ratio=1) p2a=plot(j[1].rhs(),-2,0,aspect_ratio=1) p2b=plot(j[1].rhs(),2,4,aspect_ratio=1) p1a+p1b+p2a+p2b 
       
\newcommand{\Bold}[1]{\mathbf{#1}}\left[y = -\sqrt{x^{2} - 2 \, x} - 1, y = \sqrt{x^{2} - 2 \, x} - 1\right]
\newcommand{\Bold}[1]{\mathbf{#1}}\left[y = -\sqrt{x^{2} - 2 \, x} - 1, y = \sqrt{x^{2} - 2 \, x} - 1\right]